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Abstract. This paper studies the effect of time delay on the active non-linear control of
dynamically loaded flexible structures. The behavior of non-linear systems under state
feedback control, considering a fixed time delay for the control force, is investigated. A
control method based on non-linear optimal control, using a tensorial formulation and state
feedback control is used. The state equations and the control forces are expressed in
polynomial form and a performance index, quadratic in both state vector and control forces,
is used. General polynomial representations of the non-linear control law are obtained and
implemented for control algorithms up to the fifth order. This methodology is applied to
systems with quadratic and cubic non-linearities. Strongly non-linear systems are tested and
the effectiveness of the control system, including a delay in the application of control forces is
discussed. Numerical results indicate that the control adopted algorithm can be efficient for
non-linear systems, chiefly in the presence of strong non-linearities. On the other hand
increasing time delay reduces the efficiency of the control system. This emphasizes the
importance of considering time delay in the design of active structural control systems.
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1. INTRODUCTION

In recent years, considerable attention has been paid to active structural control research.
Particularly over the last two decades, remarkable progress has been made in research on
using active and hybrid control systems as a means of structural protection against wind,
earthquakes and other hazards (Soong, 1990, Spencer Jr 1996). Most of these studies employ
linear control strategies. Non-linear structural control has a more recent history, but some
interesting strategies have been proposed lately (Yang et al. 1988 and 1994). The investigation
of time delayed actively controlled structural systems is also relatively recent but the
importance of considering its effects on the design of control systems has been showed by
some researchers (Roorda, 1980, Abdel-Rohman, 1987, Agrawal and Yang, 1997).

In a paper presented in the last COBEM, the authors of this paper used a methodology for
the non-linear active control of flexible structures, in order to limit the amplitudes of



oscillations within safe allowable bounds (Pinto and Gonçalves, 1997). This control method
was based on non-linear optimal control theory, used an indicial formulation and state
feedback control (Tomasula et al., 1996, Pinto and Gonçalves, 1999) and assumed an
idealized system without any time delay. In real systems there are unavoidable time delays.
Actually, time delay is one of the main issues concerning the use of real active structural
control systems. It is due to the time necessary for data acquisition and conditioning,
computing the required control forces, generating and transmitting the signal to the actuators,
and applying the control forces to the structure (reaction time of actuators). The magnitude of
the time delay is expected to decrease as more advanced control system software and
hardware become available, but, even with the advances of technology, time delay can not be
eliminated; only minimized. Therefore, it is an intrinsic parameter and should be considered in
the project of active control systems. Time delay induces a phase shift which may degrade the
performance of the control system and, if it is not handled properly, can not only render it
ineffective but also cause instability of the controlled system. In this paper, the effects of time
delay on the controlled system is studied. Numerical studies for a single degree of freedom
system with quadratic and cubic non-linearities under state feedback control and different
kinds of loading are presented and analyzed. Results emphasize the importance of considering
time delay in the design of active structural control systems.

2. PROBLEM FORMULATION

2.1 Control strategy

Using an indicial formulation of tensor algebra (Suhardjo et al. 1993, Pinto & Gonçalves,
1998), the state equations of a certain class of nonlinear autonomous controlled systems can
be expressed in the polynomial form
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where xi is the i-th state variable, Aj
i , Ajk

i , Ajkl
i , ... are coefficients related to system’s

properties, uj is the j-th control force and Bj
i is a coefficient that relates uj with xi. Here we

define xij = xixj, xijk = xixjxk, and so on.
Assuming state feedback, the control forces can be expressed as
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where K j
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i , K jkl
i , ... are the i-th gains of control order 1, 2, 3, ..., respectively.

The adopted performance index has the general form
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where t0 is the initial time, usually set to zero, tf is the final time, Qij, Qijk, Qijkl, ... are
symmetric positive semi-definite tensors with order 2, 3, 4, ..., respectively, and Rij is a
symmetric positive definite tensor of second order. Q and R are weighting tensors, with
elements chosen depending on the relative importance attributed to state variable bounds and
control forces. High values of Qij, Qijk, ..., stress the reduction of system response, while high



values of Rij result in less control effort (less energy consume). Choosing these values
appropriately one can get a control as efficient as possible, without a great energy
consumption.

Expressing the performance index by Taylor series
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where Vij, Vijk, Vijkl, etc... are symmetric related to their indices, one can obtain by a
minimisation procedure the following Hamilton-Jacobi-Bellman equation
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where J is given by Eq. 4 and
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Manipulating Eqs. 1, 4, 5 and 6, the first order control gain and the corresponding control
equation, known as the Riccati equation, can be obtained:
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where sym is the symmetry operator, defined in a way that when acting on a tensor T
represents its symmetric form with respect to the free indices, i.e.
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Once Vij is obtained from Eq. 8, one can get the first order control gains from Eq. 7. So
the control forces can be computed with Eq. 2, resulting in the classical linear optimal control
formulation. Similarly, one can get the equations for the second, third, fourth and fifth orders
control, using the following equations:
a)second order:
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b)third order:
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c)fourth order:
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d)fifth order:
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and so on, up to the desired order. These equations have a well defined pattern, in a way that
one can get higher order control equations without difficulty.

In order to get the tensors V, one has to solve numerically a set of differential equations,
with a certain computational cost. However, in most structural problems, tf is much longer
then the natural period and setting it to ∞ doesn’t change considerably the results and simplify
significantly the problem, converting the differential equations into algebraic ones. In this
work we derived equations for control up to the fifth order using this methodology.

2.2 Single degree of freedom non-linear systems

In this section, the application of the strategy presented in the previous section for single
degree of freedom (sdof) systems with quadratic and cubic nonlinearities is studied. These
models are capable of representing approximately, at least in a qualitative way, most of the
elements usually used in civil and mechanical engineering structures, such as beams, plates,
shells and arches. The equation of motion of such sdof nonlinear controlled autonomous
systems can be expressed as
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where x is the displacement, �x , the velocity, ��x , the acceleration, µ , the damping coefficient,
ω, the natural frequency of the system, α and β, the quadratic and cubic nonlinear coefficients,
respectively, and γ, the coefficient of the control force, u.

Using the formulation presented in the previous section, the state equations can be
expressed as in Eq. 1 with the state variables x x1 =  and x x2 = � , and the control force
u u1 = , here a scalar. In this case, the only non-zero coefficients are A1

2 = −ω2 , A2
1= 1 ,

A2
2 = −2µ , A11

2 = −α , A111
2 = −β  and B1

2 = −γ .



Assuming the performance index
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the first order control gains for displacement and velocity are given by
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which are the same obtained using the algebraic Riccati equations.
Using these results, the second order control gain for displacement takes the form
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Control gains of higher order can be obtained in a similar way. Here we developed a
computer code capable of generating the gains up to the fifth order.

It is interesting to note that when α is null we have the well known Duffing equation,
object of study of a number of nonlinear control works (Hackl et al. 1993, Cheng et al. 1993,
Cui et al. 1997, Yabuno, 1997). In such case, the second order ( K jk

i ) and forth order ( K jklm
i )

gains are all null, and the third order gain for displacement is given by
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3. NUMERICAL EXAMPLE

In this section the control strategy presented in the previous sections is applied to the
problem of a very shallow pressure loaded spherical cap, first for the system without any delay
and afterwards considering input time delay. Unit values for γ and R11  were adopted, and in Q
only Q11 is not null.

For such a problem, the first mode is dominant and a simplified one-degree-of-freedom
model is capable of describing with a reasonable degree of accuracy the nonlinear behavior of
the cap (Gonçalves, 1994). The same pressure loaded thin-walled spherical shell presented in
Gonçalves (1994) is considered. The dimensionless sdof equation of motion modeling the



vertical displacement w is given by

�� � , , , ( )w w w w w F t+ + − + =219 9 410 5 154 22 3 (24)

This system has a two-well potential function, with two stable equilibrium states at w = 0
(the reference state) and at w = 1,92. The final state of the systems depends on the initial
conditions and load characteristics, as can be observed in Fig. 1, where the free vibration
response of the cap is shown for two different sets of initial conditions, w(0) = 0,70 and w(0)
= 0,75, both with � ( )w 0 0= .
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Figure 1: Free vibration response.

Depending on the force characteristics, the response will be attracted to one of the two
potential wells, corresponding to pre and post-buckling equilibrium positions. For example,
for an harmonic excitation F(t) = F0 sin(12t), the uncontrolled system escape at a load
magnitude 76,10=oF , as shown in Fig. 2.a. For an impact load, F(t) = F0, the cap jumps to

the second potential well when F0  reaches the escape load, here 26,87, as observed in Fig. 2.b.
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Figure 2. System without control. a) harmonic load, b) impact (step) load.



3.1 Controlled system without time delay

An adequate control system can be used to prevent escape (dynamic buckling). Figure 3
shows the response of the structure without any control and with controls of order two and
three (Q11 = 500), respectively, for a load amplitude of 15, about 40% higher than the escape
load without control. One can see that only a third order control (or higher) can avoid the
failure of the structure. Higher order algorithms can be more efficient, resulting in smaller
displacements without increasing the energy consumption. The peak control force for the third
order algorithm is 7,41, very small if compared to the static critical load (204,9).
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Figure 3. Time response for the load F(t) = 15 sin(12t).

Table 1 shows how the escape load increases with the order of the adopted control system
when compared with the escape load of the system without any control (F0 = 10,76).

Table 1. Variation of the escape load with the order of the control system (harmonic load).

Order 1 2 3 4 5
F0 13,49 14,55 16,96 16,99 20,99
∆F0 (%) 25,37 35,22 57,62 57,99 95,07

One can see that a higher order control system results in higher escape loads, enlarging
the safe working capacity of the structure without demanding great control forces.

The same system was also subjected to impact (step) loading, F(t) = F0, resulting in a
escape load of 26,87. Figures 4.a and 4.b show, respectively, the time response and control
forces demanded for a step load of magnitude 35, more then 30% higher than the escape load
for the structure without control. Here Q11 = 3000.

For this load level, a control algorithm of order less than three is not able to avoid escape.
Here, higher order control algorithms are more efficient in reducing the response of the
structure with control forces of the same order of magnitude. It is important to note that the
maximum control force required is only about 5% of the static pressure load used in this
example and 4% of the static critical load.

As in the case of the harmonic loading, the control system increases the escape load,
improving the safety of the structure. For the fifth order control algorithm, for example, we



have a escape load 40,12% higher than that without control, as shown in Table 2.
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Figure 4. a) Time response and b) control forces for F0 = 35 (step load).

Table 2. Variation of the escape load with the order of the control system (step load).

Order 1 2 3 4 5
F0 31,95 33,67 35,29 36,41 37,65
∆F0 (%) 18,91 25,31 31,34 35,50 40,12

3.2 Controlled system with time delay

In this section an input time delay is considered. The system was integrated using a fifth
order Runge-Kutta algorithm and the application of the control force was increasingly
delayed. The cases of harmonic and impact loading were studied, as well as the free vibration
response. For each loading case, both the amount of time delay that made the control system
inefficient (βi) and the amount that caused escape (βe) were computed, using control
algorithms of order one to five. The control system is considered inefficient when the rms or
the peak value for displacement, velocity or acceleration of the controlled response is greater
than that obtained without control,.

For the system under free vibration and considering a starting position with the
displacement w = 0,6 and velocity equal to zero, the amounts of time delay that made the
control system inefficient (βi) were computed. These critical values are shown in Table 3.

Table 3. Critical values of time delay - free vibration.

Order 1 2 3 4 5
βi 24,00 23,60 24,74 22,69 23,02

For an harmonic excitation - F(t) = 10 sin(12t), the obtained critical values of time delay
are shown in Table 4 and in Table 5 the results for impact loading, F(t) = F0.



Table 4. Critical values of time delay - harmonic loading.

Order 1 2 3 4 5
βi 35,07 35,43 35,22 34,91 34,71
βe 40,97 41,77 45,30 41,19 40,97

Table 5. Critical values of time delay - impact loading.

Order 1 2 3 4 5
βi 24,00 24,00 24,84 24,84 24,71
βe 42,14 36,76 33,52 29,99 29,43

One can observe that the system is less sensitive to time delay when subjected to
harmonic excitation. For impact loading and free vibration, the critical values are similar. It
can also be observed that the critical values of time delay do not change significantly with the
order of the control algorithm, except in the case of step loading, when the critical value
decreases with the order of the control algorithm.

For the parameters used in this example, no case of instability was found in the
simulations using delays from 0 to 100% of the natural period of the structure.

4. CONCLUSIONS

The obtained numerical results show that the performance of a control system can be
improved using a nonlinear algorithm instead of a linear one, chiefly in the case of strong
nonlinearities such as those in the equation for the spherical cap. The control algorithm used
here is capable of great reductions of the dynamic response and can also increase the escape
load, enlarging the working capacity of the structure without demanding great control forces.
Results indicate that the control algorithm adopted can be efficient for non-linear systems, but
its efficiency can be reduced by increasing time delay. This emphasizes the importance of
considering time delay in the design of active structural control systems.

It is important to note that before applying this strategy for real structures, beside the time
delay issue, a number of practical considerations like spillover effects, control-structure
iteration, etc... should be studied, since the inadequate application of control forces to a
structure could not only render the control ineffective but also cause instability. So, one can
conclude that this strategy of nonlinear control is attractive, has a good potential and can be
used as a base for the study of more complex structures and for the design of control systems.
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